Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Access Microbiol ; 6(1)2024.
Artigo em Inglês | MEDLINE | ID: mdl-38361655

RESUMO

Xanthomonas euvesicatoria the primary causal agent of bacterial spot of pepper (BSP), poses a significant global challenge, resulting in severe defoliation and yield losses for pepper growers. We present the whole genome sequences of eight X. euvesicatoria strains associated with BSP in Vietnam. These genomes contribute to representation of pepper production regions in the global sample of X. euvesicatoria genomes, enabling the development of precise global disease management strategies.

2.
Phytopathology ; 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302452

RESUMO

The widespread presence of tolerance to copper in Xanthomonas species has resulted in the need to develop alternative approaches to control plant diseases caused by xanthomonads. In recent years, nanotechnological approaches have resulted in the identification of novel materials to control plant pathogens. While many metal-based nanomaterials have shown promise for disease control, an important question relates to the mode of action of these new materials. In this study we used several approaches such as SEM, propidium monoazide qPCR, epifluorescence microscopy and RNA sequencing to elucidate the mode of action of a Cu/Zn hybrid nanoparticle against copper tolerant strains of Xanthomonas euvesicatoria. We demonstrate that Cu/Zn, unlike Kocide 3000, did not activate copper resistance genes (i.e. copA and copB) in the copper-tolerant bacterium, but functioned by disrupting the bacterial cell structure and perturbing important biological processes such as cell respiration and chemical homeostasis.

3.
Phytopathology ; 114(1): 47-60, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37505057

RESUMO

Xanthomonas spp. infect a wide range of annual and perennial plants. Bacterial blight in young seedlings of Eucalyptus spp. in Indonesia was originally identified as X. perforans. However, these strains failed to elicit a hypersensitive response (HR) on either tomatoes or peppers. Two of the strains, EPK43 and BCC 972, when infiltrated into tomato and pepper leaves, failed to grow to significant levels in comparison with well-characterized X. euvesicatoria pv. perforans (Xp) strains. Furthermore, spray inoculation of 'Bonny Best' tomato plants with a bacterial suspension of the Eucalyptus strains resulted in no obvious symptoms. We sequenced the whole genomes of eight strains isolated from two Eucalyptus species between 2007 and 2015. The strains had average nucleotide identities (ANIs) of at least 97.8 with Xp and X. euvesicatoria pv. euvesicatoria (Xeu) strains, both of which are causal agents of bacterial spot of tomatoes and peppers. A comparison of the Eucalyptus strains revealed that the ANI values were >99.99% with each other. Core genome phylogeny clustered all Eucalyptus strains with X. euvesicatoria pv. rosa. They formed separate clades, which included X. euvesicatoria pv. alangii, X. euvesicatoria pv. citrumelonis, and X. euvesicatoria pv. alfalfae. Based on ANI, phylogenetic relationships, and pathogenicity, we designated these Eucalyptus strains as X. euvesicatoria pv. eucalypti (Xee). Comparative analysis of sequenced strains provided unique profiles of type III secretion effectors. Core effector XopD, present in all pathogenic Xp and Xeu strains, was absent in the Xee strains. Comparison of the hrp clusters of Xee, Xp, and Xeu genomes revealed that HrpE in Xee strains was very different from that in Xp and Xeu. To determine if it was functional, we deleted the gene and complemented with the Xee hrpE, confirming it was essential for secretion of type III effectors. HrpE has a hypervariable N-terminus in Xanthomonas spp., in which the N-terminus of Xee strains differs significantly from those of Xeu and Xp strains.


Assuntos
Eucalyptus , Xanthomonas , Sistemas de Secreção Tipo III , Filogenia , Doenças das Plantas/microbiologia
4.
Phytopathology ; 114(1): 241-250, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37432099

RESUMO

Xanthomonas perforans-the dominant causal agent of bacterial leaf spot of tomato-is an emerging pathogen of pepper, indicative of a potential host expansion across the southeastern United States. However, studies of the genetic diversity and evolution of X. perforans from pepper remain limited. In this study, the whole-genome sequences of 35 X. perforans strains isolated from pepper from four fields and two transplant facilities across southwest Florida between 2019 and 2021 were used to compare genomic divergence, evolution, and variation in type III secreted effectors. Phylogenetic analysis based on core genes revealed that all 35 X. perforans strains formed one genetic cluster with pepper and tomato strains from Alabama and Turkey and were closely related to strains isolated from tomato in Indiana, Mexico, and Louisiana. The in planta population growth of tomato strains isolated from Indiana, Mexico, Louisiana, and Turkey in pepper leaf mesophyll was on par with pepper X. perforans and X. euvesicatoria strains. Molecular clock analysis of the 35 Florida strains dated their emergence to approximately 2017. While strains varied in copper tolerance, all sequenced strains harbored the avrHah1 transcription activation-like effector located on a conjugative plasmid, not previously reported in Florida. Our findings suggest that there is a geographically distributed lineage of X. perforans strains on tomato that has the genetic background to cause disease on pepper. Moreover, this study clarifies potential adaptive variants of X. perforans on pepper that could help forecast the emergence of such strains and enable immediate or preemptive intervention.


Assuntos
Metagenômica , Xanthomonas , Filogenia , Doenças das Plantas/microbiologia , Genômica , Xanthomonas/genética
5.
Mol Plant Microbe Interact ; 37(2): 93-97, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38105425

RESUMO

Rapidly evolving bacterial pathogens pose a unique challenge for long-term plant disease management. In this study, we investigated the types and rate of mutations in bacterial populations during seasonal disease epidemics. Two phylogenetically distinct strains of the bacterial spot pathogen, Xanthomonas perforans, were marked, released in tomato fields, and recaptured at several time points during the growing season. Genomic variations in recaptured isolates were identified by comparative analysis of their whole-genome sequences. In total, 180 unique variations (116 substitutions, 57 insertions/deletions, and 7 structural variations) were identified from 300 genomes, resulting in the overall host-associated mutation rate of ∼0.3 to 0.9/genome/week. This result serves as a benchmark for bacterial mutation during epidemics in similar pathosystems. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Doenças das Plantas , Xanthomonas , Estações do Ano , Doenças das Plantas/microbiologia , Bactérias/genética , Genoma Bacteriano/genética , Mutação , Xanthomonas/genética
6.
Access Microbiol ; 5(6)2023.
Artigo em Inglês | MEDLINE | ID: mdl-37424560

RESUMO

Bacterial spot is an economically significant disease in tomato and pepper-producing countries globally. We report the whole-genome sequence of 11 Xanthomonas strains associated with bacterial spot disease on pepper, tomato and eggplant in the Southeastern Anatolia Region, Turkey. This genomic information can be used as a reference to study the genetic diversity of these species and contribute to illuminating pathogen evolution with respect to host specificity.

7.
Plant Biotechnol J ; 21(10): 2019-2032, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37421233

RESUMO

Citrus bacterial canker (CBC), caused by Xanthomonas citri subsp. citri (Xcc), causes dramatic losses to the citrus industry worldwide. Transcription activator-like effectors (TALEs), which bind to effector binding elements (EBEs) in host promoters and activate transcription of downstream host genes, contribute significantly to Xcc virulence. The discovery of the biochemical context for the binding of TALEs to matching EBE motifs, an interaction commonly referred to as the TALE code, enabled the in silico prediction of EBEs for each TALE protein. Using the TALE code, we engineered a synthetic resistance (R) gene, called the Xcc-TALE-trap, in which 14 tandemly arranged EBEs, each capable of autonomously recognizing a particular Xcc TALE, drive the expression of Xanthomonas avrGf2, which encodes a bacterial effector that induces plant cell death. Analysis of a corresponding transgenic Duncan grapefruit showed that transcription of the cell death-inducing executor gene, avrGf2, was strictly TALE-dependent and could be activated by several different Xcc TALE proteins. Evaluation of Xcc strains from different continents showed that the Xcc-TALE-trap mediates resistance to this global panel of Xcc isolates. We also studied in planta-evolved TALEs (eTALEs) with novel DNA-binding domains and found that these eTALEs also activate the Xcc-TALE-trap, suggesting that the Xcc-TALE-trap is likely to confer durable resistance to Xcc. Finally, we show that the Xcc-TALE-trap confers resistance not only in laboratory infection assays but also in more agriculturally relevant field studies. In conclusion, transgenic plants containing the Xcc-TALE-trap offer a promising sustainable approach to control CBC.


Assuntos
Citrus , Xanthomonas , Efetores Semelhantes a Ativadores de Transcrição/genética , Efetores Semelhantes a Ativadores de Transcrição/metabolismo , Citrus/genética , Citrus/microbiologia , Xanthomonas/genética , Regiões Promotoras Genéticas/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia
8.
Front Plant Sci ; 14: 1061803, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37275256

RESUMO

Bacterial spot caused by Xanthomonas euvesicatoria is a major disease of pepper (Capsicum annuum L.) in warm and humid production environments. Use of genetically resistant cultivars is an effective approach to manage bacterial spot. Two recessive resistance genes, bs5 and bs6, confer non-race-specific resistance against bacterial spot. The objective of our study was to map these two loci in the pepper genome. We used a genotyping-by-sequencing approach to initially map the position of the two resistances. Segregating populations for bs5 and bs6 were developed by crossing susceptible Early CalWonder (ECW) with near-isogenic lines ECW50R (bs5 introgression) or ECW60R (bs6 introgression). Following fine-mapping, bs5 was delimited to a ~535 Kbp interval on chromosome 3, and bs6 to a ~666 Kbp interval in chromosome 6. We identified 14 and 8 candidate resistance genes for bs5 and bs6, respectively, based on predicted protein coding polymorphisms between ECW and the corresponding resistant parent. This research enhances marker-assisted selection of bs5 and bs6 in breeding programs and is a crucial step towards elucidating the molecular mechanisms underlying the resistances.

9.
Plant Dis ; 107(10): 2978-2985, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36856653

RESUMO

Bacterial spot caused by Xanthomonas spp. is a significant disease that challenges pepper growers worldwide and is particularly severe in a hot and humid environment. Understanding the pathogen's population biology is critical for sustainable disease management. The goal of this study was to characterize the species, race, and bactericide sensitivity of bacterial spot-associated Xanthomonas collected from pepper in Florida. A survey of pepper production fields in southwest Florida between 2019 and 2021-covering two counties, eight farms, and two transplant facilities-resulted in the isolation of 542 Xanthomonas euvesicatoria and 35 Xanthomonas perforans strains. Four races were identified on pepper, of which most strains were race P1 (42%), race P6 (26%), race P3 (24%), and less common was race P4 (8%). All X. perforans strains were characterized as race P1 and showed a compatible reaction on tomato. Sixty-two and 96% of strains were sensitive to copper sulfate and streptomycin, respectively. One farm that did not use copper to manage the disease contained only copper-sensitive strains and was the only farm with race P3 strains. Strains were assayed for starch hydrolysis activity of which a third of X. euvesicatoria strains were strongly amylolytic, a characteristic not typically observed in X. euvesicatoria. All X. perforans strains produced bacteriocins against X. euvesicatoria in vitro. The Xanthomonas population causing bacterial spot on pepper in southwest Florida is diverse and dynamic; thus, regular monitoring provides pertinent information to plant breeders and growers for designing disease management strategies.


Assuntos
Piper nigrum , Xanthomonas , Florida , Cobre , Doenças das Plantas/microbiologia , Sulfato de Cobre , Xanthomonas/genética
10.
Phytopathology ; 113(2): 160-169, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36129764

RESUMO

For most of the 20th century, Xanthomonas euvesicatoria was the only known bacterium associated with bacterial spot of tomato in Florida. X. perforans quickly replaced X. euvesicatoria, mainly because of production of three bacteriocins (BCNs) against X. euvesicatoria; however, X. perforans outcompeted X. euvesicatoria even when the three known BCNs were deleted. Surprisingly, we observed antimicrobial activity against X. euvesicatoria in the BCN triple mutant when the triple mutant was grown in Petri plates containing multiple spots but not in Petri plates containing only one spot. We determined that changes in the headspace composition (i.e., volatiles) rather than a diffusible signal in the agar were required for induction of the antimicrobial activity. Other Xanthomonas species also produced volatile-induced antimicrobial compounds against X. euvesicatoria and elicited antimicrobial activity by X. perforans. A wide range of plant pathogenic bacteria, including Clavibacter michiganensis subsp. michiganensis, Pantoea stewartii, and Pseudomonas cichorii, also elicited antimicrobial activity by X. perforans when multiple spots of the species were present. To identify potential antimicrobial compounds, we performed liquid chromatography with high-resolution mass spectrometry of the agar surrounding the spot in the high cell density Petri plates where the antimicrobial activity was present compared with agar surrounding the spot in Petri plates with one spot where antimicrobial activity was not observed. Among the compounds identified in the zone of inhibition were N-butanoyl-L-homoserine lactone and N-(3-hydroxy-butanoyl)-homoserine lactone, which are known quorum-sensing metabolites in other bacteria.


Assuntos
Doenças das Plantas , Xanthomonas , Ágar/metabolismo , Doenças das Plantas/microbiologia , Xanthomonas/fisiologia , Florida
11.
Phytopathology ; 113(3): 400-412, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36318253

RESUMO

Xanthomonas perforans and X. euvesicatoria are the causal agents of bacterial spot disease of tomato and pepper, endemic to the Southeastern United States. Although very closely related, the two bacterial species differ in host specificity, where X. perforans is the dominant pathogen of tomato and X. euvesicatoria that of pepper. This is in part due to the activity of avirulence proteins that are secreted by X. perforans strains and elicit effector-triggered immunity in pepper leaves, thereby restricting pathogen growth. In recent years, the emergence of several pepper-pathogenic X. perforans lineages has revealed variability within the bacterial species to multiply and cause disease in pepper, even in the absence of avirulence gene activity. Here, we investigated the basal evolutionary processes underlying the host range of this species using multiple genome-wide association analyses. Surprisingly, we identified two novel gene candidates that were significantly associated with pepper-pathogenic X. perforans and X. euvesicatoria. Both candidates were predicted to be involved in the transport/acquisition of nutrients common to the plant cell wall or apoplast and included a TonB-dependent receptor, which was disrupted through independent mutations within the X. perforans lineage. The other included a symporter of protons/glutamate, gltP, enriched with pepper-associated mutations near the promoter and start codon of the gene. Functional analysis of these candidates revealed that only the TonB-dependent receptor had a minor effect on the symptom development and growth of X. perforans in pepper leaves, indicating that pathogenicity to this host might have evolved independently within the bacterial species and is likely a complex, multigenic trait.


Assuntos
Especificidade de Hospedeiro , Xanthomonas , Estudo de Associação Genômica Ampla , Doenças das Plantas/microbiologia , Genoma Bacteriano
12.
Int J Syst Evol Microbiol ; 72(11)2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36322606

RESUMO

Five bacterial strains were isolated from symptomatic leaves of Achillea millefolium, Delphinium sp. and Hydrangea sp. in California. Colonies isolated on King's medium B (KMB) appeared white, mucoid and round, similar to Pseudomonas species. Phylogenetic analyses based on 16S rRNA, rpoB, rpoD and gyrB genes placed the bacteria into three distinct groups within Pseudomonas that were most closely related to Pseudomonas viridiflava, Pseudomonas cichorii or Pseudomonas caspiana. To further characterize the strains, phenotypic analyses and the following tests were performed: fatty acid methyl ester composition, LOPAT, fluorescence on KMB, Biolog assay, and transmission electron microscopy. Finally, whole genome sequencing of the strains was conducted, and the sequences were compared with reference genomes of Pseudomonas species based on average nucleotide identity (ANI). The first group, which consists of three strains isolated from delphinium, hydrangea and achillea, had 95.6-96.9 % pairwise ANI between each other; the second group consists of two strains isolated from delphinium that had 100 % pairwise ANI. Although comparisons of the two groups with publicly available genomes revealed closest relationships with P. viridiflava (91.6 %), P. caspiana (88.3 %) and P. asturiensis (86.7 %), ANI values were less than 95 % compared to all validly published pseudomonads. Combining genomic and phenotypic data, we conclude that these strains represent two new species and the names proposed are Pseudomonas quasicaspiana sp. nov. (type strain DSMZ 11 30 42T=LMG 32 434T) for the strains isolated from delphinium, achillea and hydrangea and Pseudomonas californiensis sp. nov. (DSMZ 11 30 43T=LMG 32 432T) for the two strains isolated from delphinium. The specific epithets quasicaspiana and californiensis were selected based on the close phylogenetic relationship of strains with P. caspiana and on the geographic location of isolation, respectively.


Assuntos
Ácidos Graxos , Pseudomonas , RNA Ribossômico 16S/genética , Filogenia , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Análise de Sequência de DNA , Composição de Bases , Hibridização de Ácido Nucleico , Ácidos Graxos/química
13.
Access Microbiol ; 4(9): acmi000423, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36415546

RESUMO

The pathogen that causes stem gall in Loropetalum chinense was first identified in Florida and Alabama in 2018 and named Pseudomonas amygdali pv. loropetali. We report the genome sequence of the pathotype strain of this pathogen, Pseudomonas amygdali pv. loropetali DSM105780 PT.

14.
Front Microbiol ; 13: 835647, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35509307

RESUMO

Bacterial spot disease was first reported from South Africa by Ethel M. Doidge in 1920. In the ensuing century after the initial discovery, the pathogen has gained global attention in plant pathology research, providing insights into host-pathogen interactions, pathogen evolution, and effector discovery, such as the first discovery of transcription activation-like effectors, among many others. Four distinct genetic groups, including Xanthomonas euvesicatoria (proposed name: X. euvesicatoria pv. euvesicatoria), Xanthomonas perforans (proposed name: X. euvesicatoria pv. perforans), Xanthomonas gardneri (proposed name: Xanthomonas hortorum pv. gardneri), and Xanthomonas vesicatoria, are known to cause bacterial spot disease. Recently, a new race of a bacterial spot pathogen, race T5, which is a product of recombination between at least two Xanthomonas species, was reported in Nigeria. In this review, our focus is on the progress made on the African continent, vis-à-vis progress made in the global bacterial spot research community to provide a body of information useful for researchers in understanding the diversity, evolutionary changes, and management of the disease in Africa.

15.
Front Microbiol ; 13: 826386, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35369455

RESUMO

Changes in Xanthomonas race and species composition causing bacterial spot of tomato have occurred throughout the world and are often associated with epidemics. Knowledge of bacterial population structure is key for resistance discovery and deployment. We surveyed Xanthomonas spp. composition from processing tomato fields in the Midwestern United States over a 4-year period between 2017 and 2020, compared these to strains collected previously, and found that X. perforans is currently the most prevalent species. We characterized 564 X. perforans isolates for sequence variation in avrXv3 to distinguish between race T3 and T4 and validated race designation using hypersensitive response (HR) assays for 106 isolates. Race T4 accounted for over 95% of X. perforans isolates collected in the Midwest between 2017 and 2020. Whole genome sequencing, Average Nucleotide Identity (ANI) analysis, core genome alignment and single nucleotide polymorphism (SNP) detection relative to a reference strain, and phylogenomic analysis suggest that the majority of Midwestern X. perforans strains collected between 2017 and 2020 were nearly identical, with greater than 99.99% ANI to X. perforans isolates collected from Collier County, Florida in 2012. These isolates shared a common SNP variant resulting an a premature stop codon in avrXv3. One sequenced isolate was identified with a deletion of avrXv3 and shared 99.99% ANI with a strain collected in Collier Co., Florida in 2006. A population shift to X. perforans T4 occurred in the absence of widely deployed resistance, with only 7% of tomato varieties tested having the resistant allele at the Xv3/Rx-4 locus. The persistence of nearly identical strains over multiple years suggests that migration led to the establishment of an endemic population. Our findings validate a genomics-based framework to track shifts in X. perforans populations due to migration, mutation, drift, or selection based on comparisons to 146 genomes.

16.
Phytopathology ; 112(8): 1640-1650, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35133857

RESUMO

Although cultivars possessing recessive resistance alleles provide effective control of bacterial spot of pepper (Capsicum annuum), the deployed resistance gene, bs5, is ineffective against Xanthomonas gardneri, one of the pathogenic species. Resistance against X. gardneri was identified in C. annuum accession PI 163192, and this study sought to characterize this novel resistance and to map the resistance gene(s) to the pepper genome. We crossed PI 163192 with the susceptible cultivar Early Calwonder (ECW) to develop resistant near-isogenic lines (NILs) of ECW, designated ECW80R. The novel resistance in ECW80R was determined to be quantitative, recessively inherited, and non-hypersensitive-response causing, and inhibits lesion expansion and chlorosis. Presence of the resistance in NILs decreased the in planta bacterial population by ninefold compared with ECW. Bulked segregant analysis of resistant and susceptible individuals from an F2 population using whole genome single nucleotide polymorphisms identified a major resistance locus within an approximate 6-Mbp interval on the subtelomeric region of chromosome 11. We developed markers spanning this region and used these to genotype backcross F2 populations, which further delimited the resistance locus within a 2.3-Mbp interval. The novel resistance locus has been designated bs8. ECW80R and the linked markers developed in this study should prove useful for breeders seeking to advance this resistance into commercially relevant germplasm and for pyramiding bs8 with other resistance alleles such as bs5 and bs6. The allele bs8 will help prolong the durability of bacterial spot resistance in pepper and improve resistance to multiple species of Xanthomonas.


Assuntos
Capsicum , Xanthomonas , Capsicum/genética , Capsicum/microbiologia , Resistência à Doença/genética , Doenças das Plantas/microbiologia , Polimorfismo de Nucleotídeo Único/genética
17.
Environ Microbiol ; 23(10): 5850-5865, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33891376

RESUMO

Bacterial spot caused by Xanthomonas perforans (Xp) is an economically important disease in tomato. Previous studies have shown that the recently isolated Xp strains have acquired and retained the effector gene, xopJ2, which has been reported to increase fitness of the pathogen in the field. To elucidate the fitness benefit of xopJ2, we quantified the effect of xopJ2 on the dispersal and evolution of Xp populations on tomato. We compared movement of two wild-type Xp strains expressing xopJ2 to their respective xopJ2 mutants when co-inoculated in the field. We developed a binary logistic model to predict the presence of Xp over spatial and temporal dimensions with or without xopJ2. Based on the model, wild-type bacteria were dispersed approximately three times faster than the xopJ2 mutants. In a simulation experiment, the selective advantage due to increased dispersal velocity led to an increase in the frequency of xopJ2 gene in the Xp population and its apparent fixation within 10 to 12 cropping seasons of the tomato crop. Our results show that the presence of a single gene can affect the dispersal of a bacterial pathogen and significantly alter its population dynamics.


Assuntos
Solanum lycopersicum , Xanthomonas , Solanum lycopersicum/microbiologia , Doenças das Plantas/microbiologia , Xanthomonas/genética
18.
Microbiol Resour Announc ; 10(15)2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33858923

RESUMO

Pseudomonas syringae pv. tomato causes bacterial speck in tomato. We report the genome sequences of two P. syringae pv. tomato strains, J4 and J6, that are genetically closely related, with >99.9 average nucleotide identity (ANI), but vary in the presence of coronatine-associated genes.

19.
Phytopathology ; 111(6): 1029-1041, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33048630

RESUMO

Before 1991, Xanthomonas euvesicatoria was the causal agent of bacterial spot of tomato in Florida but was quickly replaced by X. perforans. The X. perforans population has changed in genotype and phenotype despite lack of a clear selection pressure. To determine the current Xanthomonas population in Florida, we collected 585 Xanthomonas strains from 70 tomato fields, representing 22 farms across eight counties, in the Florida tomato production region. Strains were isolated from 23 cultivars across eight seed producers and were associated with eight transplant facilities during the fall 2017 season. Our collection was phenotypically and genotypically characterized. Only X. perforans was identified, and all strains except one (99.8%) were tolerant to copper sulfate and 25% of strains were resistant to streptomycin sulfate. Most of the strains (99.3%) that were resistant to streptomycin sulfate were sequence type 1. The X. perforans population consisted of tomato races 3 (8%) and 4 (92%) and all three previously reported sequence types, ranging from 22 to 46% frequency. Approximately half of all strains, none of which were sequence type 2, produced bacteriocins against X. euvesicatoria. Effector profiles were highly variable among strains, which could impact the strains' host range. The effector xopJ4, which was previously thought to be conserved in X. perforans tomato pathogens, was absent in 19 strains. Nonmetric multidimensional scaling and network analyses show how strains and strain traits were associated with production system variables, including anonymized farms and transplant facilities. These analyses show that the composition of the Florida X. perforans population is diverse and complex.


Assuntos
Solanum lycopersicum , Xanthomonas , Florida , Doenças das Plantas , Xanthomonas/genética
20.
PLoS One ; 15(5): e0233301, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32469926

RESUMO

Bacterial spot is a destructive disease of tomato in Florida that prior to the early 1990s was caused by Xanthomonas euvesicatoria. X. perforans was first identified in Florida in 1991 and by 2006 was the only xanthomonad associated with bacterial spot disease in tomato. The ability of an X. perforans strain to outcompete X. euvesicatoria both in vitro and in vivo was at least in part associated with the production of three bacteriocins designated Bcn-A, Bcn-B, and Bcn-C. The objective of this study was to characterize the genetic determinants of these bacteriocins. Bcn-A activity was confined to one locus consisting of five ORFs of which three (ORFA, ORF2 and ORF4) were required for bacteriocin activity. The fifth ORF is predicted to encode an immunity protein to Bcn-A based on in vitro and in vivo assays. The first ORF encodes Bcn-A, a 1,398 amino acid protein, which bioinformatic analysis predicts to be a member of the RHS family of toxins. Based on results of homology modeling, we hypothesize that the amino terminus of Bcn-A interacts with a protein in the outer membrane of X. euvesicatoria. The carboxy terminus of the protein may interact with an as yet unknown protein(s) and puncture the X. euvesicatoria membrane, thereby delivering the accessory proteins into the target and causing cell death. Bcn-A appears to be activated upon secretion based on cell fractionation assays. The other two loci were each shown to be single ORFs encoding Bcn-B and Bcn-C. Both gene products possess homology toward known proteases. Proteinase activity for both Bcn-B and Bcn-C was confirmed using a milk agar assay. Bcn-B is predicted to be an ArgC-like serine protease, which was confirmed by PMSF inhibition of proteolytic activity, whereas Bcn-C has greater than 50% amino acid sequence identity to two zinc metalloproteases.


Assuntos
Proteínas de Bactérias/genética , Bacteriocinas/genética , Loci Gênicos , Doenças das Plantas/microbiologia , Solanum lycopersicum/microbiologia , Xanthomonas/crescimento & desenvolvimento , Sequência de Aminoácidos , Proteínas de Bactérias/biossíntese , Bacteriocinas/biossíntese , Homologia de Sequência , Xanthomonas/classificação , Xanthomonas/genética , Xanthomonas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...